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Abstract: Plant petioles and stems are hierarchical cellular structures, displaying structural
features defined at multiple length scales. The current work focuses on the multi-scale
modelling of plant tissue, considering two orders of structural hierarchy, cell wall and tissue.
The stiffness of plant tissue is largely governed by the geometry of the tissue cells, the
composition of the cell wall and the structural properties of its constituents. The cell wall
is analogous to a fiber reinforced composite, where the cellulose microfibril (CMF) is the
load bearing component. For multilayered cell wall, the microfibril angle (MFA) in the
middle layer of the secondary cell wall (S2 layer) largely affects the longitudinal stiffness
for values up to 40o. The MFA in turn influences the overall wall stiffness. In this work,
the effective stiffness of a model system based on collenchyma cell wall of a dicotyledonous
plant, the Rheum rhabarbarum, is computed considering generic MFA and volume fractions.
At the cellular level, a 2-D Finite Edge Centroidal Voronoi tessellation (FECVT) has been
developed and implemented to generate the non-periodic microstructure of the plant tissue.
The effective elastic properties of the cellular tissue are obtained through finite element
analysis (FEA) of the Voronoi model coupled with the cell wall properties. The stiffness of
the hierarchically modeled tissue is critically important in determining the overall structural
properties of plant petioles and stems.

Keywords: FECVT; Voronoi; FEA; effective stiffness; cellulose microfibril



Polymers 2013, 5 731

1. Introduction

Plants are one of the major kingdoms in biology. From a structural point of view, a plant exhibits
remarkable mechanical properties. Among their organs, the petiole that attaches the leaf to the stem is
one of the significant load bearing structures of a plant. As a cantilever beam, the petiole supports the
leaf against gravity and allows it to be exposed to the sun. The petiole thus provides mechanical support
against the weight of the leaf and against environmental factors, such as rain and wind, resisting both
bending and twisting load [1]. The petiole of Rheum rhabarbarum (rhubarb) plant, shown in Figure 1,
is an example of a cantilever beam that must resist combined loads including bending and twisting. The
petiole’s flexural and torsional stiffness are largely influenced by its overall geometric properties and the
stiffness of its constituents, including tissues and cell walls.

Figure 1. Rheum rhabarbarum (rhubarb) plant in a garden (©2000 Rosie Lerner,
Purdue University).

The petiole can be considered as a hierarchical structure, having structural features defined at multiple
length scales. A petiole is generally composed of an assembly of cellular tissues whose mechanical
characteristics collectively depend on the geometry of their constituent cells, cell wall composition,
the structural properties of the wall constituents, and the microstructures of the tissues. It is useful
to characterize the structural hierarchies in plants in terms of levels (n). As indicated in Figure 2,
n = 1 corresponds to the cell wall, n = 2 to tissue, and n = 3 to the petiole. Although the hierarchical
organization of plants spans from the molecular level to the whole organism, in this work the stiffness
of tissues is specified by the hierarchies at the cellular and sub-cellular level (Figure 2). Thus, the
mechanical attributes of a tissue depend on the structural properties of the cell wall constituents and their
structural organizations.

Cell walls are mainly composed of complex networks of polysaccharides, namely cellulose (C),
hemicelluloses (HC) and pectin, along with comparatively minor quantities of structural protein and/or
lignin [2–5]. Each Cellulose Microfibril (CMF) is a semi-crystalline aggregate of 36 β-1,4-glucan
chains. CMFs are several µm long but only about 3–4 nm thick, and lay 15–30 µm apart in the wall [6].
The construction of the cell wall is considered to be a fiber-reinforced composite, where the cellulose
fibrils act as the main load-bearing elements [7–9]. The CMFs are embedded in a compliant matrix of
hemicelluloses and lignin, where the stiffness of the matrix is approximately two orders of magnitude
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for the property characterization of polycrystalline aggregates [30] and inter-granular cracks [31].
Mattea et al. [32] and Roudot et al. [33] pioneered the use of Voronoi tessellation to model
the microstructure of fruit tissues. Both groups aimed only to capture the randomness of the fruit
tissue microstructure without necessarily producing a model that accurately represented the real tissue.
Recently, Ntenga et al. [34,35] tried to analyse the structure, morphology and mechanical properties
of the Rhectophyllum camerunense (RC) plant fiber using a conventional Voronoi diagram. Due to
inherent drawbacks of the Voronoi (CVT) model, semi-infinite edges were present at the boundary of
the fiber, making the model unsuitable for Finite Element Analysis (FEA). To generate a geometric
model, having finite edges at the boundary, a Finite-edge Centroidal Voronoi Tessellation (FECVT)
method has been developed. The FECVT method has been applied to model the tissue microstructures of
emphArabidopsis thaliana and Philodendron melinonii, two plants with distinct tissue architecture [36].
In this work, the FECVT method is applied to generate the virtual model of the rhubarb tissue.
Coupled with the cell wall properties, the FEA of the virtual model provides the effective/homogenized
tissue stiffness.

Most studies on the homogenization of cellular solids are based on regular models with a periodic
microstructure. Real solid foams, however, exhibit amorphous arrangements of pores with different
sizes and shapes rather than perfectly periodic structures. The homogenized/apparent elastic property
of periodic honeycomb varies from 10% to 15% compared with non-periodic honeycomb [27]. On
the other hand, to analyze the irregular microstructures represented by the Voronoi tessellation, the
homogenization process requires a large scale representative volume element (RVE). Analyses of
such models had been provided, among others, by Silva et al. [27], Fazekas et al. [37], Roberts
and Garboczi [38] for both two and three-dimensional models. To obtain the homogenized/effective
stiffness properties, the 2-D virtual tissue (RVE) undergoes FEA for a given boundary condition [39].
The computational homogenization technique is used with non-periodic microstructure for global
homogenization. This technique can effectively consider the microstructural irregularity present in the
plant tissues. The effective properties can be used in the next hierarchical level to capture macro-scale
properties such as bending and torsional stiffness of the whole petiole.

The objective of this work is to determine the theoretical bounds of stiffness of the collenchyma
tissue modeled with two orders of structural hierarchy, namely cell wall and tissue micro-architecture.
At the first order of the hierarchy, the constitutive properties of the cell wall are modeled via the classical
micromechanical models of Voigt and Reuss, and the microfibril angle. The geometric model of the
collenchyma tissue is generated by the FECVT algorithm; it undergoes finite element analysis that
accounts for the cell wall properties to determine the stiffness of the tissue at the second order of
the hierarchy.

2. Methodology

Since most plant tissues display hierarchical organization, we adopt in this work a hierarchical
modeling approach to obtain their stiffness properties. In the first order of the hierarchy, the cell wall
stiffness is modeled considering as variables the MFA and the volume fractions of the wall constituents,
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and their elastic properties. The obtained wall stiffness is then used in the next hierarchical level, where
the effective stiffness of tissue, represented by an FECVT model, is determined through FEA.

2.1. Stiffness of Cell Wall via Micromechanics Theory

The cell wall, which belong to the bottommost hierarchy (n = 1 in Figure 2), is the building block at
this level of hierarchy. The upper and lower limits of stiffness of the cell wall can be determined using
micromechanical models—Voigt and Reuss models. Three pieces of information are required in the
model: (i) the elastic moduli of cell wall constituents; (ii) the volume fractions of the various constituents;
and (iii) the geometric arrangements of the constituents relative to each other. The properties of the cell
wall constituents are available in literature. For example for cellulose, a wide range of theoretical as well
as experimental estimation of its elastic modulus is reported. Earlier theoretical prediction of Young’s
modulus provides relatively higher values, 246 and 319 GPa [40,41], whereas more recent analyses
show 120–140 GPa [42–44] and 167 GPa [45] for crystalline cellulose along the fiber direction. Data
for the elastic modulus of hemicelluloses are scarce and fall within a range of 5–8 GPa [46]. The elastic
properties of lignin are difficult to assess and vary from 4 to 7 GPa [47,48]. Considering an orthotropic
arrangement in the cell wall, a set of rational moduli [10] used in this work are shown in Table 1. The
volume fractions and the geometric arrangements of the constituents are discussed in Section 3.1, where
their effects on the engineering properties of cell wall are discussed in detail.

Table 1. Elastic properties of cell wall constituents used in the present work [10].

Properties CMF Lignin Hemicellulose

Ex (GPa) 134 2.0 2.0
G (GPa) 4.4 1.0 0.6
ν 0.1 0.2 0.3

Note: Dry conditions (12% moisture), 20 ◦C.

The values shown in Table 1 are used in the Voigt and Reuss models to determine the wall stiffness
along the fiber direction, E1, and across the fiber direction, E2 (Figure 3). The Voigt upper bound is

E1 = Efvf + Emvm (1)

and the Reuss lower bound is

1

E2

=
vf
Ef

+
vm
Em

(2)

where E1 and E2 refer to the Young’s moduli of the composite, Ef and Em refer to the Young’s modulus
of fiber and matrix, respectively; vf and vm refer to the volume fraction of fiber and matrix, respectively,
with vf + vm = 1.

Using the same concept, the major Poisson’s ratio, ν12, along the fiber direction, is

ν12 = νfvf + νm (1− vf ) (3)
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2.3. Geometric Modeling

A Voronoi microstructure is constructed based on a set of randomly generated points called Voronoi
sites. The cell boundaries are drawn such that any point within the enclosed polygon is closer to its
Voronoi site than to the Voronoi sites of the surrounding polygons. The Voronoi tessellation thus divides
a space into as many regions as there are Voronoi sites. In the current method, the centroids of the cells
are used to construct the Voronoi diagram. To construct a centroidal Voronoi tessellation (CVT), first,
a color or greyscale micrograph of a plant tissue is subjected to image segmentation. Thresholding, a
method for image segmentation, converts the color or greyscale image into a binary (black and white)
image. Since plant tissues usually exhibit graded cellularity as well as complex heterogeneity, an edge
detection algorithm is used in conjunction with thresholding to obtain the cellular distribution accurately.
The Canny edge detection algorithm [49] is used here to detect the shapes of the cells more precisely.

Once the shapes of the cells are detected, the first order moments of the cells are computed using X
and Y coordinates of the pixels. The algebraic form of the moment equation of a digital image is

mpq =

n1∑
i=1

n2∑
j=1

Xp
i Y

q
j f (i, j) (17)

where (Xi, Yj) is the coordinate of the (i, j)th pixel, f (i, j) have value 1 if the (i, j)th pixel is in the
shape and 0 otherwise. Considering the region of interest, which is completely enclosed in a rectangular
region G of size n1 by n2 pixels, i varies from 1 to n1, and j varies from 1 to n2 in the function f (i, j).
For a 2-D region, p+ q denotes the order of moment, where p and q are integers. Hence, the coordinates
of a cell are

X̄ =
m10

m00

and Ȳ =
m01

m00

(18)

where the zeroth moment, physically, is equal to the area of the region.
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After determining the centroids of the cells, the Voronoi tessellation is constructed based on the Quick
hull algorithm [50]. The outcome is a conventional CVT with semi-infinite edges at the boundary. The
semi-infinite edges complicate finite element analysis because the boundary conditions, applied at an
infinite distance, are not realistic. This problem is especially difficult to correct in models with irregular
shape contour.

To remove the infinite edges from the boundary, the centroids of the outermost cells are determined.
For each centroid, the distances between the centroid and the surrounding Voronoi sites (centroids of
the surrounding polygons) are calculated, and the minimum distance is determined. An imaginary point
is created such that the distance between itself and the centroid is half of the minimum distance. The
imaginary point is thus created for each of the selected centroid. Based on the set of imaginary points
and the convex hull algorithm [50], a boundary is imposed, after which a Boolean subtraction is realized.
With this Boolean operation, the semi-infinite edges are truncated, and the vertices of the truncated edges
are reconnected to form the final boundary. The FECVT technique is, therefore, capable of capturing
the microstructure of an image with an arbitrarily shaped boundary contour. This novel computational
algorithm, FECVT method [36], is applied here to model the rhubarb tissue microstructure.

2.4. Finite Element (FE) Modeling

The compressive stress-strain regime of the Voronoi microstructure is determined using finite element
analysis (ANSYS Inc., Canonsburg, PA, USA). Each cell wall of the Voronoi microstructure is modeled
with a BEAM23 element, capable of modeling both elastic and plastic behaviour. The shear deformation,
which is important for stubby beam, is also captured by considering the shear deflection coefficient of
the beam element. Beams have a rectangular cross-section of uniform thickness, t. The relative density
ρ∗/ρs of the microstructure is given by

ρ∗

ρs
=

area of solid walls

total area of a V oronoi model
= t

N∑
i=1

li

LXLY
(19)

where N is the total number of beams, li is the length of the beam i; LX and LY are the dimensions of
the Voronoi model along X and Y directions, respectively. The FEA is conducted for different relative
density, adjusted by the value of t. In the finite element analysis, a Young’s modulus Es = 1 is assigned
to each beam to obtain the normalized tissue stiffness.

2.4.1. Boundary Conditions

Three types of boundary conditions (BC)—(1) mixed boundary condition, (2) prescribed displace-
ment boundary condition, and (3) periodic boundary condition—can be generally imposed. Since the
microstructure is not periodic, the periodic boundary condition is not appropriate here. The mixed
boundary condition enforces the normal displacement, eliminating the tangential force and the bending
moments at the nodes on the boundaries. Since the mixed boundary condition tends to underestimate
the Young’s modulus [51], the displacement boundary condition has been selected, which has been
proved to be appropriate for the analysis of non-periodic microstructures for uniaxial and biaxial loading
cases [27,29,37,52].
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the types of species, cells, the cell wall is widely accepted to be considered as a three-layered structure.
In fact, the woody plants typically exhibit three secondary layers along with a primary layer and middle
lamellae. The primary layer only plays a significant role in the early stage of a growing plant. When
a plant cell reaches its maturity, the secondary wall becomes the determinant governing its mechanical
performance. The volume fractions of CMF, lignin, and hemicelluloses shown in Table 2 represent
values of a typical set of multilayered plant cell walls. However, the composition of the constituents
depends on other factors as well, such as types of species, and cells, location of the cells and the age of
a plant.

Table 2. Approximate volume fractions of tracheid cell wall [41].

Cell wall layer CMF (%) Lignin (%) Hemicellulose (%)

S1 28 45 27
S2 45 20 35
S3 47 15 38

The data shown in Tables 1 and 2 are used to compute the effective engineering properties, such as
stiffness and Poisson’s ratio, of cell wall. The variations of stiffness with respect to MFA along different
layers are shown in Figure 6. Figure 6a depicts the effect of MFA on longitudinal the Young’s modulus
for each layer. Up to 40◦, the effect of MFA on the longitudinal wall stiffness is substantial, and the
stiffness is reduced to a considerable amount. In contrast, the transverse stiffness is nearly invariant
with the MFA up to 50◦. Beyond this limit, the transverse modulus varies with MFA and increases with
the increasing MFA. The shear modulus is maximum for CMF equal to 45◦ in the loading direction.
However, the variation of shear modulus up to 20◦ is less significant, and a gradual increase is observed
until the MFA reaches 45◦ and starts decreasing afterwards. The Poisson’s ratios shown in Figure 7 vary
with the MFA. From the comparison of the minor Poisson’s ratio, we observe that the major Poisson’s
ratio increases rapidly up to MFA of 20◦. The major Poisson’s ratio plays an important role in influencing
the anisotropic cell wall properties.

It is evident that the MFA plays a significant role in the wall stiffness, an observation that has been
experimentally noticed in numerous plants’ cell wall. The MFA usually varies between 0◦ and 40◦, in
the S2 layer [53–55] and plays a leading role in determining the overall wall stiffness. Moreover, since
the thickness of S2 layer is generally much higher than that of S1 and S3 (also primary layer) layers,
the measurement of MFA for the whole cell wall or the average MFA across the cell wall involves the
approximation of MFA in the S2 layer. Thus, the S2 layer is often the main determinant of the stiffness of
plant [56]. This concept is used here to determine the effective engineering properties of a single layered
dicotyledonous cell. Although a more accurate and rigorous analysis would be conceivable considering
microfibril angles at different layers, the composition of S2 layer with respective MFA provides a good
approximation for the overall stiffness of cell wall. Moreover, the measurement of microfibril angles
in different layers is not always experimentally possible. Since the focus of this paper is to develop a
multiscale model that accounts for the elastic part of the deformation, the nonlinear mechanical response
has been ignored. Yet, the non-linear response of plant tissue is important because the approach presented
here can be extended to model the nonlinear deformation of the cell wall as well.
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Figure 6. Stiffness properties of different cell wall layers for varying MFA.

(a) Longitudinal stiffness (b) Transverse stiffness

(c) Shear modulus

In stems and petioles, collenchyma tissue is observed in peripheral locations, beneath the epidermal
layer (Figure 8). As per experimental measurements, the collenchyma tissue typically comprises 20%
cellulose and the rest 80% of HC and lignin [57,58]. Although there is no clear distinction, the
collenchyma cell walls can be considered to be secondary cell wall [58,59], where the orientation of
CMF is mostly found to be inclined to the longitudinal axis [60–65]. However, the MFA also varies with
the technique used for the measurement. For dicotyledonous plants, the MFA usually lies between 6◦

and 15◦ [66]. Based on the fiber volume fraction and MFA, the stiffness of collenchyma tissue is derived.
The effective stiffness properties of collenchyma cell wall with 15◦ MFA are summarized in Table 3. The
effective stiffness of the collenchyma tissue will be determined based on the effective wall stiffness.

3.2. FECVT Modeling of the Tissue Microstructure

The geometry of the collenchyma tissue of the rhubarb petiole is generated using the FECVT
algorithm. Figure 9 shows the collenchyma tissue and its corresponding FECVT model. The latter
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single and multilayered cell wall. At the cellular level, the tissue has been realistically modeled with the
FECVT algorithm, which is capable of representing the actual cell distributions within the collenchyma
tissue. The geometric model is representative of the cellular tissue and allows to numerically obtain the
elastic properties of the cellular tissue. The heterogeneous cellular distribution obtained with the FECVT
method can more realistically capture the compliant properties of plant tissue.
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18. Gindl, W.; Gupta, H.S.; Schöberl, T.; Lichtenegger, H.C.; Fratzl, P. Mechanical properties of spruce
wood cell walls by nanoindentation. Appl. Phys. A Mater. Sci. Process. 2004, 79, 2069–2073.

19. U.S. Department of Energy Genome Program. Avaliable online: http://genomics.energy.gov/
(accessed on 30 May 2013).

20. Ghosh, S.; Lee, K.; Moorthy, S. Two scale analysis of heterogeneous elastic-plastic materials with
asymptotic homogenization and Voronoi cell finite element model. Comput. Methods Appl. Mech.
Eng. 1996, 132, 63–116.

21. Ghysels, P.; Samaey, G.; Tijskens, B.; van Liedekerke, P.; Ramon, H.; Roose, D. Multi-scale
simulation of plant tissue deformation using a model for individual cell mechanics. Phys. Biol.
2009, 6, 1–14.

22. Pasini, D. On the biological shape of the polygonaceae rheum rhabarbarum petiole. Int. J. Des.
Nat. Ecodyn. 2008, 3, 1–25.

23. Faisal, T.R.; KhalilAbad, E.M.; Hristozov, N.; Pasini, D. The impact of tissue morphology,
cross-section and turgor pressure on the mechanical properties of the leaf petiole in plants. J.
Bionic Eng. 2010, 7, S11–S23.

24. Rey, A.D.; Pasini, D.; Murugesan, Y.K. Multiscale Modeling of Plant Cell Wall Architecture
and Tissue Mechanics for Biomimetic Applications. In Biomimetics: Nature-Based Innovation;
Bar-Cohen, Y., Ed.; CRC Press: New York, NY, USA, 2011; pp. 131–168.

25. Gibson, L.J.; Ashby, M.F.; Schajer, G.S.; Robertson, C.I. The mechanics of two-dimensional
cellular materials. Proc. R. Soc. Lond. A 1982, 382, 25–42.

26. Gibson, L.J.; Ashby, M.F. The Mechanics of Foams: Basic Results. In Cellular Solids: Structure
and Properties, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 1999; pp. 175–234.

27. Silva, M.J.; Hayes, W.C.; Gibson, L.J. The effects of nonperiodic microstructure on the elastic
properties of 2-dimensional cellular solids. Int. J. Mech. Sci. 1995, 37, 1161–1177.

28. Li, K.; Gao, X.L.; Subhash, G. Effects of cell shape and cell wall thickness variations on the elastic
properties of two-dimensional cellular solids. Int. J. Solids Struct. 2005, 42, 1777–1795.

29. Silva, M.J.; Gibson, L.J. The effects of non-periodic microstructure and defects on the compressive
strength of two-dimensional cellular solids. Int. J. Mech. Sci. 1997, 39, 549–563.



Polymers 2013, 5 749

30. Cailletaud, G.; Forest, S.; Jeulin, D.; Feyel, F.; Galliet, I.; Mounoury, V.; Quilici, S. Some elements
of microstructural mechanics. Comput. Mater. Sci. 2003, 27, 351–374.

31. Hussain, K.; de los Rios, E.R.; Navarro, A. A two-stage micromechanics model for short fatigue
cracks. Eng. Fract. Mech. 1993, 44, 425–436.

32. Mattea, M.; Urbicain, M.J.; Rotstein, E. Computer model of shrinkage and deformation of cellular
tissue during dehydration. Chem. Eng. Sci. 1989, 44, 2853–2859.

33. Roudot, A.C.; Duprat, F.; Pietri, E. Simulation of a penetrometric test on apples using Voronoi-
Delaunay tessellation. Food Struct. 1990, 9, 215–222.

34. Ntenga, R.; Beakou, A. Structure, morphology and mechanical properties of Rhectophyllum
camerunense (RC) plant-fiber. Part I: Statistical description and image-based reconstruction of
the cross-section. Comput. Mater. Sci. 2011, 50, 1442–1449.

35. Beakou, A.; Ntenga, R. Structure, morphology and mechanical properties of Rhectophyllum
camerunense (RC) plant fiber. Part II: Computational homogenization of the anisotropic elastic
properties. Comput. Mater. Sci. 2011, 50, 1550–1558.

36. Faisal, T.R.; Hristozov, N.; Rey, A.D.; Western, T.L.; Pasini, D. Experimental determination of
Philodendron melinonii and Arabidopsis thaliana tissue microstructure and geometric modeling
via finite-edge centroidal Voronoi tessellation. Phys. Rev. E 2012, 86, 031921:1–031921:10.

37. Fazekas, A.; Dendievel, R.; Salvo, L.; Brechet, Y. Effect of microstructural topology upon the
stiffness and strength of 2D cellular structures. Int. J. Mech. Sci. 2002, 44, 2047–2066.

38. Roberts, A.P.; Garboczi, E.J. Elastic moduli of model random three-dimensional closed-cell
cellular solids. Acta Mater. 2001, 49, 189–197.

39. Faisal, T.R.; Rey, A.D.; Pasini, D. Hierarchical microstructure and elastic properties of leaf petiole
tissue in philodendron melinonii. MRS Proc. 2011, 1420, 1–6.

40. Gillis, P.P. Effect of hydrogen bonds on the axial stiffnes of crystalline native cellulose. J. Polym.
Sci. A Polym. Phys. 1969, 7, 783–794.

41. Bodig, J.; Jayne, B.A.T. Mechanics of Wood and Wood Composites, 2nd revised ed.; Krieger
Publishing Company: New York, NY, USA, 1993.

42. Sakurada, I.; Kaji, K. Relation between the polymer conformation and the elastic modulus of the
crystalline region of polymer. J. Polym. Sci. C Polym. Symp. 1970, 31, 57–76.

43. Sakurada, I.; Nukushina, Y.; Ito, T. Experimental determination of the elastic modulus of crystalline
regions in oriented polymers. J. Polym. Sci. 1962, 57, 651–660.

44. Satcurada, I.; Ito, T.; Nakamae, K. Elastic moduli of the crystal lattices of polymers. J. Polym. Sci.
C Polym. Symp. 1967, 15, 75–91.

45. Tashiro, K.; Kobayashi, M. Theoretical evaluation of three-dimensional elastic constants of native
and regenerated celluloses: Role of hydrogen bonds. Polymer 1967, 32, 1516–1526.

46. Cousins, W.J. Young’s modulus of hemicellulose as related to moisture content. Wood Sci. Technol.
1978, 12, 161–167.

47. Cousins, W.J. Elastic modulus of lignin as related to moisture content. Wood Sci. Technol. 1976,
10, 9–17.

48. Cousins, W.J.; Armstrong, R.W.; Robinson, W.H. Young’s modulus of lignin from a continuous
indentation test. J. Mater. Sci. 1975, 10, 1655–1658.



Polymers 2013, 5 750

49. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell.
1986, 8, 679–699.

50. Barber, C.B.; Dobkin, D.P.; Huhdanpaa, H. The Quickhull algorithm for convex hulls. ACM Trans.
Math. Softw. 1996, 22, 469–483.

51. Zhu, H.X.; Knott, J.F.; Mills, N.J. Analysis of the elastic properties of open-cell foams with
tetrakaidecahedral cells. J. Mech. Phys. Solids 1997, 45, 319–343.

52. Van der Burg, M.W.D.; Shulmeister, V.; van der Geissen, E.; Marissen, R. On the linear elastic
properties of regular and random open-cell foam models. J. Cell. Plast. 1997, 33, 31–54.

53. Cave, I.D. Theory of X-ray measurement of microfibril angle in wood. Part 1. The condition for
reflection X-ray diffraction by materials with dibre type symmetry. Wood Sci. Technol. 1997, 31,
143–152.

54. Cave, I.D. Theory of X-ray measurement of microfibril angle in wood. Part 2. The diffraction
diagram X-ray diffraction by materials with fibre type symmetry. Wood Sci. Technol. 1997, 31,
225–234.

55. Barnett, J.R.; Bonham, V. A. Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev.
2007, 79, 461–472.

56. Niklas, K.J.; Spatz, H. Plant Physiology; University of Chicago Press: Chicago, IL, USA, 2012.
57. Roelofsen, P.A. The Plant Cell Wall. In Handbuch der Pflanzenanatomie; von Lindbauer, K., Ed.;

Borntraeger: Berlin, Germany, 1959.
58. Leroux, O. Collenchyma: A versatile mechanical tissue with dynamic cell walls. Ann. Bot. 2012,

110, 1083–1098.
59. Kerr, T.; Bailey, I.W. The cambium and its derivative tissue. X. Structure, optical properties and

chemical composition of the so-called middle lamella. J. Arnold Arboretum 1934, 15, 329–349.
60. Beer, M.; Setterfield, G. Fine structure in thickened primary walls of collenchyma cells of celery

petioles. Am. J. Bot. 1958, 45, 571–580.
61. Roland, J.C. Infrastructure des membranes du collenchyme. C. R. Acad. Sci. 1964, 259,

4331–4334.
62. Roland, J.C. Edification et infrastructure de la membrane collenchymateuse. Son remaniement lors

de la sclerification. C. R. Acad. Sci. 1965, 260, 950–953.
63. Roland, J.C. Organisation de la membrane paraplasmique du collenchyme. J. Microsc. 1966, 5,

323–348.
64. Chafe, S.C. The fine structure of the collenchyma cell wall. Planata 1969, 90, 12–21.
65. Gupta, G.P. Plant Cell Biology; Discovery Publishing House Pvt. Ltd.: New Delhi, India, 2004.
66. Stevens, C.; Müssig, J. What Are Natural Fibres? In Industrial Applications of Natural Fibres:

Structure, Properties and Technical Applications; Müssig, J., Ed.; John Wiley & Sons, Limited:
London, UK, 2010; pp. 13–48.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).


